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Abstract
We compare predictions of the mean-field theory of superconductivity for nearly
antiferromagnetic and nearly ferromagnetic metals for cubic and tetragonal
lattices. The calculations are based on the parametrization of an effective
interaction arising from the exchange of the magnetic fluctuations and assume
that a single band is relevant for superconductivity. We present intuitive
arguments for why quasi-two-dimensional d-wave pairing is a particularly
favourable case.

1. Introduction

In a series of papers [1–3], we have examined within a unified framework the possibility of
superconductivity on the border of magnetic long-range order, assuming that the dominant
interaction channel is of magnetic origin and depends on the relative spin orientations of the
interacting quasiparticles. In order to understand certain qualitative features of the model
and in the hope of providing some useful guidelines to experimentalists in the field, we have
studied the role of the lattice structure (tetragonal versus cubic), whether one is on the border
of ferromagnetic or commensurate antiferromagnetic long-range order. In this paper, we focus
on the intuitive arguments that explain the results of the numerical calculations.

2. Model

We assume that a single band is relevant for superconductivity and consider quasiparticles in
a simple tetragonal lattice described by a tight-binding dispersion relation

εp = −2t (cos(px) + cos(py) + αt cos(pz))

− 4t ′(cos(px) cos(py) + αt cos(px) cos(pz) + αt cos(py) cos(pz)) (1)

with hopping matrix elements t and t ′. αt models the electronic structure anisotropy along the
z direction. αt = 0 corresponds to the quasi-2D limit while αt = 1 corresponds to the 3D
cubic lattice. For simplicity, we measure all lengths in units of the respective lattice spacing.
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Figure 1. Eliashberg transition temperature for Ts f = 0.67t , κ2
0 = 12, a physically realistic

coupling constant g2χ0/t = 5 as a function of the inverse correlation length κ for nearly
antiferromagnetic and ferromagnetic systems in two and three dimensions. The transition
temperatures for the nearly ferromagnetic case have been multiplied by a factor of five.

Figure 2. Static limit of pairing potential for antiferromagnetic fluctuations seen by the second
quasiparticle given that the first is at the origin (marked by a cross).
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Figure 3. The pairing potential seen by a quasiparticle in a spin-singlet dx2−y2 Cooper pair state
given that the other quasiparticle is at the origin (marked by a cross). The figure shows the evolution
of the potential as one goes from a cubic to a tetragonal lattice by varying the parameter αm . Closed
circles denote repulsive sites and open circles attractive ones. The size of the circle is a measure of
the strength of the interaction. The nodal planes of the dx2−y2 state are represented by the shaded
regions.

Figure 4. The magnetic potential seen by a quasiparticle in a spin-triplet px Cooper pair state given
that the other quasiparticle is at the origin (marked by a cross). The figure shows the evolution of
the potential as one goes from a cubic to a tetragonal lattice by varying the parameter αm . Open
circles denote attractive sites. The size of the circle is a measure of the strength of the interaction.
The nodal planes of the px state are represented by the shaded regions.

The results shown below are all for a nearest-neighbour hopping t ′ = 0.45t and a band filling
factor n = 1.1.

The effective interaction between quasiparticles is assumed to be isotropic in spin space
and is defined in terms of the coupling constant g and the generalized magnetic susceptibility,
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which is assumed to have a simple analytical form consistent with the symmetry of the lattice.

χ(q, ω) = χ0κ
2
0

κ2 + q̂2 − i ω
η(q̂)

(2)

where κ and κ0 are the correlation wavevectors or inverse correlation lengths in units of the
lattice spacing in the basal plane, with and without strong magnetic correlations, respectively.
Define

q̂2
± = (4 + 2αm) ± 2(cos(qx) + cos(qy) + αm cos(qz)) (3)

where αm parametrizes the magnetic anisotropy. αm = 0 corresponds to quasi-2D magnetic
correlations and αm = 1 corresponds to 3D magnetic correlations.

In the case of a nearly antiferromagnetic metal, the parameters q̂2 and η(q̂) in equation (2)
are defined as

q̂2 = q̂2
+ (4)

η(q̂) = Ts f q̂−. (5)

In the case of a nearly ferromagnetic metal the parameters q̂2 and η(q̂) in equation (2) are
defined as

q̂2 = q̂2
− (6)

η(q̂) = Ts f q̂− (7)

where Ts f is a characteristic spin fluctuation temperature.

3. Results

The reader is referred to the original papers [1–3] for details of the procedure used in the
numerical solution of the Eliashberg equations for the transition temperature. One obtains a
transition to a spin-triplet p-wave superconducting state in the case of nearly ferromagnetic
systems and a spin-singlet dx2−y2 state in the nearly antiferromagnetic case.

Figure 1 shows the ratio Tc/Ts f as a function of κ2. We remind the reader that, in our
model, magnetic long-range order is at κ = 0. The first striking observation is that magnetic
pairing is more robust for nearly antiferromagnetic systems than for ferromagnetic ones, given
otherwise similar conditions. The second important trend one notices is that magnetic pairing is
more favourable in quasi-two-dimensional than three-dimensional systems. The latter results
are in qualitative agreement with the findings of [4, 5].

4. Discussion

In the case of magnetic pairing on the border of ferromagnetic long-range order, the pairing
interaction is purely attractive in the spin-triplet channel, while in the case of spin-singlet
pairing in nearly antiferromagnetic systems it is oscillatory in space and thus has both
attractive and repulsive regions. One could therefore have expected that magnetic pairing
mediated by ferromagnetic spin-fluctuations would have turned out to be the most favourable
case. As pointed out in [1], on the border of ferromagnetism, magnetic pairing in the spin-
triplet state has the disadvantage that only the exchange of magnetic fluctuations polarized
along the direction of the interacting spins, i.e. longitudinal fluctuations, contributes to the
quasiparticle interactions. For a spin-rotationally invariant system, both longitudinal and
transverse fluctuations contribute to pairing only for a spin-singlet state.
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For nearly antiferromagnetic metals, superconductivity depends on the ability of the
electrons in a Cooper pair state to sample mainly the attractive regions of the oscillatory pairing
potential. The fact that this turns out to be possible for quasi-two-dimensional tetragonal
systems is illustrated in figure 2.

Figure 2 shows that in this case most of the repulsive regions of the pairing potential are
located along the diagonal. Hence by selecting the Cooper pair state to vanish for x = ±y,
most of the repulsive regions are rendered harmless, and one can easily convince oneself that
this is the only alternative. The magnetic pairing model successfully predicted the dx2−y2

symmetry of the pairing state [6] for the cuprate superconductors.
The role played by lattice anisotropy is best explained by looking at the evolution of the

static limit of the pairing potential as the lattice is made more and more anisotropic. The
case of the nearly antiferromagnetic metal is shown in figure 3. The oscillatory pattern of
the pairing potential is now three-dimensional and it is no longer possible to cancel out the
repulsive regions of the quasiparticle interaction as effectively as in the quasi-two-dimensional
case. Figure 3 shows that the strength of the interaction in the repulsive sites outside of the
nodal plane of the dx2−y2 state is reduced while at the same time the attraction in the basal plane
is enhanced as one goes from the cubic to a more and more anisotropic tetragonal lattice. This
enhancement is the consequence of the increase of the phase space of soft magnetic fluctuations
as one goes from a cubic to a quasi-two-dimensional structure. Moreover, since our model
potential varies smoothly with the tetragonal distortion, parametrized by αm , the calculations
reported in [3] show that these effects occur gradually with increasing separation between the
basal planes.

The situation in the ferromagnetic case is depicted in figure 4. The interaction is attractive
for all neighbouring sites of the origin. The increase of the phase space of soft magnetic
fluctuations is obviously also at work in this case and the attraction in the basal plane is enhanced
as one goes from the cubic to a more and more anisotropic tetragonal lattice. The calculations
reported in [3] also show that these effects occur gradually with increasing separation between
the basal planes for the same reason they do in the nearly antiferromagnetic case, namely the
smooth dependence of the effective quasiparticle interaction on the anisotropy parameter αm .
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